This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3575565

LOGO

IEEE TRANSACTIONS AND JOURNALS TEMPLATE

Risk-Sensitive Safety Filters for Reinforcement
Learning with Probabilistic Guarantees

Armin Lederer, Member, IEEE, Erfaun Noorani, Member, IEEE, John S. Baras, Fellow, IEEE, and Sandra
Hirche, Fellow, IEEE

Abstract— Humans have the ability to deviate from their
natural behavior when necessary, which is a cognitive
process called response inhibition. Similar approaches
have independently received increasing attention in recent
years for ensuring the safety of control. Realized using
control barrier functions or predictive safety filters, these
approaches can effectively ensure the satisfaction of state
constraints through an online adaptation of nominal con-
trol laws, e.g., obtained through reinforcement learning.
While the focus of these realizations of inhibitory control
has been on risk-neutral formulations, human studies have
shown a tight link between response inhibition and risk
attitude. Inspired by this insight, we propose a flexible,
risk-sensitive method for inhibitory control. Our method
is based on a risk-aware condition for value functions,
which guarantees the satisfaction of state constraints. We
propose a method for learning these value functions us-
ing common techniques from reinforcement learning and
derive sufficient conditions for its success. By enforcing
the derived safety conditions online using the learned
value function, risk-sensitive inhibitory control is effec-
tively achieved. The effectiveness of the developed control
scheme is demonstrated in simulations.

Index Terms— Safe reinforcement learning, risk sensitive
control, stochastic systems, safety filter, uncertain systems

. INTRODUCTION

Inhibitory control, also known as response inhibition, refers
to the cognitive ability to suppress or override prepotent or
habitual responses in favor of more appropriate (e.g. safer)
actions [1]. For example, in industrial settings, employees
with strong inhibitory control can adhere to safety protocols
and refrain from engaging in risky behaviors that may lead to
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accidents or injuries. The ability to inhibit impulsive actions
or responses can prevent accidents and mitigate risks.

Independent from this foundation in psychology, response
inhibition has become increasingly popular in learning-based
control and Reinforcement Learning (RL) [2] in recent years,
where safety is a major concern [3]. The idea is to decou-
ple optimality and safety in the design phase by separately
determining optimal control laws and so-called safety filters
[4], [5]. These two are subsequently combined online by
monitoring the safety of the optimal, but potentially unsafe
control input, such that it can be modified using the safety
filter whenever necessary [6]. Thereby, the prepotent optimal
response is inhibited to guarantee the safety of the closed-loop
system. Compared to related approaches for safe reinforcement
learning, e.g., primal-dual approaches [7], [8], this decou-
pled approach has advantages regarding modularity, ensures
a stronger notion of safety, and does not require interactions
with the real system before it can ensure safety.

The challenge of this approach lies in designing flexible
safety filters that can effectively render nominal policies safe.
A conceptionally simple approach for realizing this form of
inhibitory control, sometimes referred to as shielding, for-
mulates safety as a constraint in an optimal control problem
which aims to minimize the adaptation of the nominal control
input [9]. By solving the resulting optimization problem in a
receding horizon fashion, such predictive safety filters can be
flexibly applied to a wide range of dynamics, but the necessary
online optimization can prevent their application in real-time
critical control problems [10]. This weakness can be overcome
by expressing safety through conditions on value functions,
which can be obtained prior to the application of the safety
filter. These value functions can be obtained using Hamilton-
Jacobi reachability theory to maximize the safe set [11], [12],
such that switching at the boundary of the safe set from
the nominal to the reachability-induced controller guarantees
safety. Since reachability-based methods commonly employ
spatial discretization approaches to compute the value func-
tions, they are generally restricted to problems with rather
low-dimensional state spaces. Control barrier functions (CBFs)
address this issue through a parametric description of the
value-function [13], [14]. For simple problems, the value
function can be manually designed using first principles,
but classical techniques from control theory such as sum
of squares optimization [15], scenario optimization [16], and
convex relaxations [17] are applicable to automate the design
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of CBFs using data. Tools from machine learning allow to
further increase the flexibility and scalability of the automated
design, e.g., via the supervised training of neural networks
[18], [19], through imitation learning [20], or using RL with
binary rewards [21] [22].

While these approaches allow the seemingly straightforward
realization of inhibitory control for ensuring safety, they typ-
ically assume no uncertainty in the dynamics, which appears
in real-word systems in the form of process noise and model
inaccuracy. The process noise can be straightforwardly han-
dled using expected value functions and model inaccuracy can
be treated via probabilistic worst-case approximations [23],
[24] for safety filters, but such approaches do not consider
the risk of losing safety due to uncertainty. This is in strong
contrast to human decision making, for which psychological
studies have shown a critical link between response inhibition
and an individual’s risk attitude (willingness to take risk or
not) [25]. The importance of this risk sensitivity is not limited
to humans, but also plays a crucial role for inhibitory control
in engineered systems. It can be easily achieved in principle
by reformulating standard conditions using risk measures,
e.g., Conditional-Value-at-Risk (CVaR) [26], when inhibitory
control is implemented through analytically derived safety
conditions such as CBFs. However, the extension to flexible
and data-driven approaches for constructing safety conditions,
e.g., using RL techniques remains an open problem.

We address this problem of realizing inhibitory control with
risk-sensitivity similar to humans for ensuring the safety of a
wide class of systems via the following contributions:

« Sufficient risk-sensitive safety conditions: To ensure the
probabilistic satisfaction of state constraints, we introduce
cost functions allowing us to express sufficient safety
constraints via risk-sensitive conditions for the cumulative
cost along system trajectories. These conditions reveal
an intuitive relationship between risk-aversion and safety
probability.

o Necessary safety conditions for cumulative costs: Us-
ing a risk-seeking perspective, we derive an upper bound
on the probability of systems remaining below a desired
cumulative cost value. Thereby, this analysis provides a
necessary condition for the safety of control laws.

« Safe policies and value functions through RL: Based
on these results, we develop an approach for determining
safe policies and corresponding safety value functions
using common techniques from RL. The success of the
proposed approach is shown to be guaranteed under weak
assumptions relating to the controllability properties of
the system dynamics.

« Inhibitory control through safety filters: By enforcing
the satisfaction of the derived safety conditions with the
learned value function during the operation of the con-
troller, we obtain a risk-sensitive safety filter. Moreover,
we prove it to inherit probabilistic safety guarantees from
the safe policy obtained through RL.

These contributions form the foundation of our novel and
comprehensive framework for inferring risk-sensitive safety
filters using common techniques from RL. Note that this is a
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significant extension compared to our preliminary work [27],
where we focused solely on the special case of safety filters for
systems with stochastic process noise without a consideration
of necessary safety conditions.

The remainder of this paper is structured as follows. In
Section II, the problem of rendering a given policy safe with
respect to state constraints using safety filters is formalized.
Our approach for realizing response inhibition in control using
risk-sensitive safety filters for environments with stochastic
noise is derived in Section III. We present our method for
learning risk-sensitive safety filters in settings with bounded
disturbances in Section IV. In Section V, the effectiveness
of the proposed safety filter is illustrated, before the paper is
concluded in Section VI

II. PROBLEM SETTING
A. Notation

We wuse lower/upper case symbols to denote vec-
tors/matrices. Blackboard bold letters denote sets with indexes
+/+,0 restricting the set to positive/non-negative numbers,
e.g., Ry and Ry, are the real, positive and real, non-negative
numbers, respectively. If not specified differently, || - || denotes
the Euclidean norm. Probabilities and expectations are denoted
by P(-) and E[-], respectively. Whenever necessary for clarity
of exposition, an index is used to indicate the variable with re-
spect to which the probabilities and expectations are computed,
e.g., E,[] is the expectation with respect the random vector .
Uniform and Gaussian distributions are denoted by U([a, b])
and NV (u, 0?), respectively, where a, b € R specify the support
of the uniform distribution and 41, 02 € R denote the mean and
variance of the Gaussian distribution. The floor/ceil operators
are denoted by |-|/[-], and arctan2 : R xR — (—m, 7) is the
standard 2-argument extension of the arctan function.

B. Problem Statement

We consider a discrete-time dynamical system

Tiy1 = f(@r, wp, wi), (D

where ;, € X C R% are the system states, uy € U C Réu
are control inputs, and wj € C R% comprises process
noise and disturbances. While we assume the true, continuous
transition function f : X x Ux — R% to be unknown, we
require the knowledge of a probabilistic model in the form of
a distribution over functions as formalized in the following.
Assumption 1: A probability distribution F over possible
dynamics f is known, i.e., f ~ F.
This class of probabilistic models covers a wide range of prac-
tically found approaches. When the uncertainties are limited to
certain parameters, i.e., we can write fg (&g, uk,wy), we can
implicitly define a distribution F by specifying distributions
for the parameters @ € R%. This type of system description
can also be obtained automatically, e.g., when learning a
model of the function f(-,-,-) from data using linear Bayesian
regression [28]. In addition to these parametric uncertainty
descriptions, Assumption 1 is also satisfied when using non-
parametric techniques for function inference such as Gaussian
process regression [29]. Finally, approximate distributions F
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can be learned using neural network approaches, e.g., deep
ensembles [30]. Therefore, this assumption holds for a wide
range of scenarios.

We assume that a nominal, potentially unsafe policy 7* :
X — U is given, which can be obtained, e.g., using standard
RL techniques [31]. Our goal is to render the nominal policy
7*(-) safe using inhibitory control of the form

Toate(®) =argmin ||[7* (z) — ul| (22)
uelU

such that w is safe. (2b)

In this response inhibition, our notion of safety follows
the common principle of classifying the state space X into
a compact safe region Xgue C X and an unsafe region
Xunsate = X \ Xgafe. For example, the safe set Xg,f can
represent the joint angles for which self-collisions of a robotic
manipulator are excluded. Due to the mere availability of a
probabilistic model with potentially unbounded uncertainty,
it is generally not possible to deterministically ensure that
the system never enters the unsafe state space. Therefore, we
define the following two notions of probabilistic safety, which
follow from the straightforward extension of the concept of
forward invariance [32].

Definition 1: A policy m(-) is called 1-step -safe if there
exists a subset V C X5 such that

P(f(x,w(x),w) € V)>1-9§ 3)

holds for all € V.
Definition 2: A policy =(-) is called d-safe if there exists
a subset V C X,,r such that

Plxy €V, Yk e Ry 1) > 139, 4

holds for all =y € V and the state sequence recursively defined
through xy 1 = f(xk, w(xT)), wi)-
Note that 1-step J-safety as introduced in Definition 1 is a
significantly stronger requirement than merely demanding the
next state to lie in the safe subset, i.e., P(f(z,7(z),w) €
Xsafe) > 1 — 5. A direct consequence of this fact is that
the forward invariant set V is often not identical to Xg,fe
since there are commonly states © € X, for which no
control input w exists such that f(x,u,w) lies in Xgate
with probability 1 — §. This generally prevents the direct
enforcement of safety via a constraint set Xg,f, on the next
state f(x, u,w).

Since Definition 1 requires a form of forward invariance
of V, it immediately induces guarantees for all states along a
K-step trajectories of the form

Plxp €V, Vk=1...,K) > (1-6)¥, 6))

where xj; is defined through iterative application of (1).
However, 1-step d-safety does not imply d-safety as introduced
in Definition 2 since it cannot ensure a constant probability for
the system state xj remaining in V with increasing horizon
length K, ie., for K — oo the right side of (5) vanishes.
Therefore, Definition 2 can be interpreted as an infinite horizon
version of (1), and is consequently a stronger notion of safety.

In order to ensure either of these forms of safety using

risk inhibition, we need additional assumptions on wy. In the
remainder of this paper, we will distinguish the following two
scenarios.

1) Stochastic Noise: In the first scenario, we assume that
the noise is stochastic, such that (1) can be interpreted as a
Markov Decision Process. This is formalized in the following
assumption.

Assumption 2: The process noise wy follows a known,

potentially state-dependent, probability distribution with zero
mean, i.e., wg ~ p(Tg).
Since we do not restrict the support of the noise distribution
p(+), noise realizations can be unbounded. Hence, it is gen-
erally not possible to guarantee that the state x; remains in
any compact set for all k& € Ry 4 with a positive probability
as discussed in [23]. As this prevents any approach from
guaranteeing J-safety, we focus on 1-step d-safety in this
scenario. The response inhibition approach for ensuring this
form of safety is derived in Section III.

2) Bounded Disturbance: In the second scenario, we do not
make any assumption about the type of the disturbance w, such
that it can be deterministic, stochastic or adversarial. Instead,
we only restrict the size of the disturbance as formally stated
in the following assumption.

Assumption 3: An upper bound w € R of the norm of the

disturbance wy, is known, i.e., ||wi|| < @, VK € Rg 4.
Using the knowledge of an upper bound @, the effect of the
disturbance wyj, on the transitions can be robustly bounded
in contrast to the necessary probabilistic treatment in the
stochastic noise scenario. Thereby, we are not limited to 1-
step d-safety in the bounded disturbance scenario. An approach
for response inhibition with §-safety guarantees is derived in
Section IV.

[1l. RISK-SENSITIVE RESPONSE INHIBITION IN
STOCHASTIC ENVIRONMENTS

Determining a condition (2b) for 1-step d-safety with poten-
tially unbounded process noise wy is a challenging problem
since we generally do not know which subset V is suitable for
Definition 1. Here, we follow the ideas of [23] and employ RL
techniques to define these subsets through a value function.
This allows us to derive sufficient conditions for 1-step J-
safety using a risk-averse perspective in Section III-A. By
exploiting a risk-seeking view, necessary conditions for 1-step
d-safety are proven in Section ITI-B. Based on these conditions,
in Section III-C, we address the problem of learning a separate,
so-called backup policy whose pure focus lies on ensuring
safety. Finally, a risk-sensitive safety filter employing the safe
back-up policy is presented for realizing inhibitory control in
RL in Section III-D.

A. Sufficient Safety Criteria via Risk-Averse Analysis

In order to derive sufficient conditions for the 1-step J-safety
of a policy m(-), we need to find suitable sets V C Xgafe
following Definition 1. For the eventual goal of inferring safety
filters, it is important that these sets V exhibit a representation
that admits a straightforward integration into optimization
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algorithms. This desired property immediately motivates the
use of an expected cumulative cost function

Ve(x) =Ef 0 lz ch(wk)l (6)
k=0

for the definition of the set V, where xj, is defined through
the iterative application of (1) with &y = x and uy = mw(xy).
Note that the immediate cost ¢ : R% — Ry, and the
discount factor v € (0,1) in (6) are not related in any way
to the computation of the nominal control law =7*(-), but
they are only used as the basis for our derivation of safety
conditions. Therefore, the immediate cost ¢(-) can be thought
of as an indicator of the unsafe subset X, ,sate. This perspective
straightforwardly allows to show the existence of a sub-level
set of V:(-) contained in Xg,f., as guaranteed by the following
lemma.

Lemma 1 ( [23]): Assume there exists a constant ¢ € R,
such that the cost ¢ : R% — Ry, satisfies

C(:B) > ¢ Vo € Xynsafe- @)

Then, there exists a constant fj € R4, such that the intersection
between the sub-level set V& = {x € X : V() < £} and
Xunsafe 18 empty, i.e., V& N Xynsate = 0.

Based on this lemma, we can choose any sub-level set Vfr
with ¢ < ¢ for showing l-step d-safety as introduced in
Definition 1. In order to determine the necessary threshold
value &, different approaches can be pursued. As shown
in [23], it follows directly from the proof of Lemma 1 that the

search for £ can be posed as a global optimization problem

¢ =yminVa(z) +& (8)

Since mingex V(x) > 0 is guaranteed, this leads to the
simple threshold ¢ > 0. Due to the conservatism necessary
for the proof of Lemma 1, these approaches for computing &
can result in rather conservative values. Therefore, it can be
better to directly base the computation of £ on the condition
Vg, C Xgafe- This can be achieved, e.g., by defining f_ as the
solution of a robust optimization problem of the form

max £ )
S. t. V.,r(ac) Z E Vo € Xunsafo- (10)

As many efficient approaches for (approximately) solving such
robust optimization problems have been proposed [33], [34],
(9) can be effectively solved using numerical tools in practice.
Therefore, finding a suitable value & for Lemma 1 is not an
issue, such that we make the following assumption.

Assumption 4: The parameter € is chosen such that V& is
included in X, i.€., Vfr C Xgafe-

Remark 1: The requirements posed on the immediate cost
function ¢(-) in Lemma 1 are generally not very restrictive.
The most straightforward choice fulfilling condition (7) is
probably the indicator function, which is 1 if € € Xynsate
and O otherwise. While this choice is theoretically valid, it
is not ideal for our goal of using standard RL algorithms
for learning the expected cumulative cost function Vi (-) due
to a lack of informative gradients. Even though this issue
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can be avoided using other choices for the cost function
¢(+), e.g., with Rectified Linear Unit (ReLU) functions which
can also satisfy (7), they can have a negative effect on the
approximation quality of X,¢. Therefore, a suitable trade-off
between approximation quality and ease of learning must be
found.

Remark 2: While there is no explicit constraint on the
choice of v in Lemma 1, it is clear from (6) that a sufficiently
small value needs to be chosen to ensure a finite value of
the cumulative cost function. Therefore, the choice of v is
important to ensure the well-definedness of (6).

Remark 3: In practice, no closed-form for (6) can be easily
found, but a finite approximation of the infinite sum together
with flexible function approximators allow an arbitrarily accu-
rate approximation. It is straightforward to show that Lemma 1
remains valid for sufficiently small approximation error. Sub-
sequent results are not directly affected by the approximation.

After a cost function ¢(-) and a corresponding threshold &
have been determined, it only remains to derive conditions
that ensure the state stays in V& for some ¢ < ¢ after a
transition. While this could be achieved using a probabilistic
“worst case” consideration as shown in [23], this approach
yields a computationally challenging min-max problem for
unknown system dynamics. Therefore, we follow a fully
probabilistic approach by introducing the risk operator [35]

= %log (E [exp (BC)))

for an arbitrary random variable C' and risk parameter 5 € R .
This operator allows the derivation of a computationally
efficient condition for ensuring 1-step d-safety as shown in
the following proposition.

Proposition 1: Consider a cost function ¢(-) satisfying (7),
process noise w for which Assumption 2 holds, and a constant
¢ € R, satisfying Assumption 4. If there exist constants ¢, 3 €
R, with £ <& such that!

Rﬁ [VTF (Q}+)} < ga

Rg(C] (11)

Ve € V& (12)

holds for ™ = f(x, w(x),w), then, m(-) is 1-step J-safe on
V&, with

6 = exp (B (f—f)) (13)

Proof: Due to Lemma 1 and Assumption 4, we can

bound the probability of leaving X, by the probability

of leaving V&. Therefore, it is sufficient to derive an upper
bound for the probability

P (Vﬂ-(:l:"—) > E) =FE_+ [Ig(Vﬂ(w+)} ,

where the indicator function Iz : R — {0, 1} is defined as

Iﬁ(v):{o ifV<é

(14)

> 15
1 ifV>E (1)
Note that Vi (-) is a deterministic function, such that the
expectation affects only the random variable = in (23). More-
over, /3 is positive, exp(0) = 1 and the exponential function

IThe risk of the value function Vi (xt) is computed with respect to the
noise distribution p and the function distribution JF.
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is strictly increasing and positive. Therefore, we can bound
the indicator function through the exponential expression

I(Vr(@™)) < exp (8 (Val(a™) - §))

due to the positivity of . By taking the expectation of both
sides, this inequality immediately leads to

P (V,,(a:+) > f) < Ep+ [exp (BV,,(aﬁ'))} exp(—B€). (17)

Due to the definition of the risk operator in (11), we can
simplify the right side of this inequality to obtain

P (V,,(:c*) > E) < exp (6 (Rg[V,,(:B*)] — 5)) .

Since Rg[V(x™)] < ¢ is ensured by (12), we have
P (Va(x™) > ) < 6 with § defined in (13). n
This result provides a straightforward condition, which
merely requires the evaluation of the risk operator and the
computation of the cumulative cost, which is a problem
commonly encountered in RL. Moreover, it offers a simple
expression for the probability of safety, such that it can easily
be computed. Since the probability of a safety violation §
guaranteed by Proposition 1 only depends on three parameters,
it allows an intuitive interpretation:

(16)

(18)

o The difference between ¢ and & can be interpreted as
a safety margin since it requires the dynamics to be
contractive on the set V& \ V& towards V&. The larger
this safety margin, the more contractive is the behavior at
the boundary of V& and consequently, it becomes more
unlikely that the state reaches X \ V5.

o The parameter 3 reflects the risk-sensitivity of the safety
condition (12). A large value of 3 corresponds to a
high risk-aversion since it causes the tails of the noise
distribution p and the function distribution F to have
a larger effect on the left side of (12). In the extreme
case of 3 — oo, this leads to (12) corresponding to a
condition on the worst case realization of wy and f(-)
[35]. This increasing risk-aversion with growing f is
intuitively accompanied by an increase in the probability
of safety.

Remark 4: When using Proposition 1 to provide safety
guarantees for a policy, it is not possible to choose 3 and
¢ independently. This is due to the coupling of these two
parameters caused by (12), which can become violated when
choosing a large S and small £ simultaneously. Therefore,
£ and & need to be jointly determined, e.g., by maximizing
(13) such that (12) is satisfied, which can be performed using
robust optimization techniques. Note that this coupling via (12)
is also how the choice of ~ and c¢(-) impact the certifiable
probability of safety. While the exact relation between these
design choices and the probability of safety is non-trivial in
general, the understanding of this coupling still allows the
beneficial integration of prior knowledge about states x likely
to transition to Xypsafe Dy assigning them high costs c(x).
Moreover, this coupling loses importance when considering
the special case of policies minimizing the cumulative cost
because this induces guarantees on the satisfaction of (12) as
shown in Section III-C.

Remark 5: As discussed after Definition 2, Proposition 1

immediately implies that xj remains in V§ for K time steps
with probability of at least (1—6)% if it starts in V&, i.e., xg €
V.. Therefore, the safety certificate provided by Proposition 1
is not limited to one time step, but straightforwardly extends
to arbitrary long but finite time intervals. However, it is also
clearly visible that §-safety over infinitely long time intervals
cannot be guaranteed for any positive value §. This is a
direct consequence of the stochastic noise, which requires us
to treat every time step independently, such that unbounded
realizations of the noise can drive the system outside the safe
set Xgafe at every time step without the possibility to exploit
spatial correlations to improve safety guarantees.

Remark 6: The safety condition (12) can be interpreted as
a variant of commonly used barrier function criteria for state
constraints [36]. This can be easily seen by negating (12) and
adding V() to both sides, which results in

V(@) = Rg[Ve ()] > V() — €. (19)

Therefore, B(x) = £ — Vz(x) can be considered a zeroing
barrier function [14] and (19) corresponds to the risk-averse

version of the deterministic barrier condition
B(x") — B(x) > —a(B(x)) (20)

with extended class K., function «
a(B) = B [14].

: R — R satisfying

B. Necessary Safety Criteria via Risk-Seeking Analysis

In addition to deriving a sufficient condition for 1-step &-
safety, the expected cumulative value function (6) also admits
the derivation of a necessary condition for the safety of its
sub-level set V. This condition is obtained by taking a risk-
seeking perspective, i.e., employing the risk operator Rg|[]
with 8 < 0, to determine an upper bound on the probability
of staying in the sub-level set V. Thereby, we can specify,
under which criteria V& cannot be 1-step J-safe as shown in
the following proposition.

Proposition 2: Consider a cost function ¢(-) satisfying (7),
process noise w for which Assumption 2 holds, and a constant
€ € R, satisfying Assumption 4. If there exist constants
BER_ and £ €R, with £€>¢ such that

Rp[Vr(xF)] > ¢ (1)

holds for some state  and =% = f(x,7(x),w), then, m(-)
is not 1-step d-safe on V& for all

5<1—exp(ﬂ(§—@). (22)

Proof: This proof is analogous to the proof of Proposi-

tion 1, but we start our analysis with the probability of staying
in Vfr. Therefore, we have

P(Va(z?) <€) =1-P (Val(z™) > &)
= Eg+ [1 — Ig(Va(zT)],

(23)
(24)

where we use the probability of the complementary event
in the first line and the indicator funtion (15) in the second
line. Note that 5 is negative, exp(0) = 1 and the exponential
function is strictly increasing and positive. Therefore, we
can bound the indicator function through the exponential
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expression

1 — Ig(Ve(z™)) < exp (8 (Va(z™) - €)),

due to the negativity of 5. By taking the expectation of both
sides, this inequality immediately leads to

P (Va(xt) <€) <Eg+[exp (BVa(zT))] exp(—BE). (26)

Due to the definition of the risk operator in (11), we can
simplify the right side of this inequality to obtain

P (V,T(CC+) < f_) < exp (ﬂ (Rﬁ[vﬂ'(x+)] - g)) .

Since Rg[V(x™)] > ¢ is ensured by (12), we have
P(Va(z™) <€) < exp(B(£—E)). This implies that (22)
must hold since at least one state = is mapped outside V&
with probability of at least 1 — exp (8 (£ — £)). [ ]
This result is similar in its conditions to Proposition 1, but
differs in essential points. Firstly, (21) is reversed compared
to (12) in the sense that & must be a lower bound. Thereby,
it allows us to lower-bound the probability of leaving the set.
Moreover, a single state satisfying condition (21) is sufficient
in contrast to Proposition 1, where all states in V& have to
satisfy (12). This is a natural simplification since a single state
suffices to make the satisfaction of (12) impossible. Thereby,
Proposition 2 provides a necessary condition for the safety on
Vi: No combination of «, 8 and ¢ is allowed to exist such
that (21) holds.

Remark 7: A policy does not have to satisfy the conditions
of either Proposition 1 or 2. This is partially due to the fact that
the approximation quality of the estimated safe set depends on
the choice of the cost ¢(+), but more crucially it is a result of
the approximations used in bounding the probability of safety
based on the risk. Hence, both propositions do not allow a
classification of all policies into certifiable 1-step §-safe or not.

B<0 (25

27)

C. Inferring Safe Policies via Reinforcement Learning

While Propositions 1 and 2 allow to decide about the safety
of a policy, they do not address the problem of determining a
safe policy. In this section, we show that this problem can be
solved by formulating it as the optimization problem

Tsafe = arg min Eg [V‘I\' (ZB)} :
mell

(28)

This optimization problem has the form of a standard re-
inforcement learning problem, such that any reinforcement
learning algorithm can be used in principle to solve (28). While
the choice of algorithms is not inherently restricted, the impor-
tance of the value function in our approach can render modern
actor-critic approaches, e.g., SAC [37], beneficial as they
directly infer a value function along with the policy. Thereby,
the additional step of learning a model of the value function
V.o from roll-outs of the safe policy mg,¢. can be alleviated
via a suitable choice of the reinforcement learning algorithm.

Even though (28) does not involve the risk operator R[],
its solution 7g,¢e is guaranteed to satisfy the conditions of
Proposition 1 under weak assumptions. This is demonstrated
by the subsequent theorem. The proof follows after a discus-
sion of the assumptions.
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Theorem 1: Consider a cost function ¢(+) satisfying (7) and
process noise w for which Assumption 2 holds. Assume that
there exist a policy 7 (-) and constants 01,60y € R, with 6 <
1/(1—~) such that

Va(x) < b1c(x) + 602, VxeX (29)

is satisfied. Moreover, assume there exist constants 03,0, €
Rg,+ such that

Ve(x) > 03¢(x) + 04, VxeX (30)
holds for all policies 7(-). If
. 02 04
¢ > - — 31
00— +1) 0y Gh
holds, then, the policy (28) is 1-step 6*-safe on Vi:afe with
0* =exp (B* (5* - 5)), where
8%, = argmin exp (6 (5 — f_)) (32a)
BER,EER
st.E<€ (32b)
(12) holds. (32¢)

Discussion: The core challenge overcome by Theorem 1
lies in establishing a connection between the optimization
problem (28) suited for generic RL algorithms, and the risk-
based decrease condition (12) for safety. This is achieved by
exploiting properties of value functions to show an expected
decrease and subsequently extending this guarantee to the risk
condition (12). While large values for #3 and 64 in (30) are
generally beneficial for admitting larger values of ¢ in (31),
it is always possible to trivially choose 03 = 1, 8, = 0 due
to non-negativity of ¢(-). Condition (29) essentially requires a
sufficiently slow increase of the immediate costs c(xy) along
trajectories for some policy 7r(-). The additional requirement
of 61 < 1/(1—v) merely requires that Vz (x) < ¢(®)/(1—+) 4 65,
which can be straightforwardly seen to be satisfied if the policy
7(+) performs better than maintaining the initial cost ¢(x) for
all times. Such a behavior can be shown to be achieved if,
e.g., variants of exponential controllability hold, which admits
the direct derivation of the constants #; and 6, [38]. It is
important to note that these properties do not need to be shown
for the optimized policy 7rsate, but a simpler, e.g., parametric,
policy can be used to prove these properties. Thus, (29) can be
interpreted as the requirement for the existence of a safe policy
considering the decrease of the value function it guarantees.
Hence, (29) and (30) do not pose severe restrictions in practice,
such that Theorem 1 is flexibly applicable in general.

Note that the required lower bound (30) for all possible
cost functions Vi (-) is only necessary because of the offset
05, which leads to a lower bound

§_91(’Y—1)+1

for the admissible values of ¢ due to (30) and (31). Since
the admissible value ¢ depends directly on the cost function
Vi (+), it causes the challenge of an indirect dependence of &
on the policy 7 (-). Therefore, Vi (-) and Vi, (-) potentially

admit different values for ¢ as illustrated in Fig. 1. This
potential ambiguity is resolved by (30), which establishes

(33)
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Xunsafc

Fig. 1. The largest safe sub-level set Visafe for the safe policy msafe (+)
typically enlarges the maximal sub-level set fof’c"’e“ contained in Xsafe
for an arbitrary policy 7 (-) satisfying (29). In particular, the set Vﬁsafe
is usually significantly larger than the sub-level set Vﬁr with the same
threshold &, which generally does not correspond to the largest safe sub-
level set. Note that due to the offset 82, there exists a lower bound & for &

below which the conditions of Proposition 1 cannot be satisfied anymore.

a direct relationship between ¢ and £ for all possible cost
functions V(-) and thereby leads to the lower bound (31),
which alleviates the need for Assumption 4. Thereby, (31) can
be interpreted as the condition ensuring Viafe C Xgate. If no
offset exists, i.e., 0o = 64 = 0, it can be easily seen that ¢ > 0
must be satisfied. This is the trivial lower bound for ¢ due to
the assumed non-negativity of immediate cost functions c(-).
Therefore, the offset A5 is the only reason for the restriction
of the admissible threshold ¢.

Proof: In order to prove Theorem 1, we first show that a risk-
neutral variant of condition (12) guarantees the existence of pa-
rameters ¢ and  satisfying the requirements of Proposition 1.

Lemma 2: Assume that

Ept [Va(z ™)) <&, VaeVE (34)

holds for some constant §~ < &. Then, there exist constants
B €R, and & < € such that (12) is satisfied.

Proof: By the Taylor series expansion of the exponential
function, we have

Ry [V ()] = (35)
1 + B 2( t
3 log (14 BEq+ [V (xT)] —|—7Ez+ (Vi) +...).
From the premise of the lemma, it follows that
Rp[Ve(2™)] < (36)

1
B

Since log(1 + a) < a for a € R and by noting the positivity
of Vr(x™) and the risk-aversion parameter 3, we have

log 1+3¢ ﬂ—Q 2z
g\ 1488+ 2Em+[V,,(ac N+

Rp[Ve(z ) <€+ <;Em+ [Vi(xh)] +.. ) . 3D

Since the second summand can be brought arbitrarily close
to 0 by choosing a sufficiently small §, there exists a 5 such
that the right side of (37) is smaller than E, which concludes
the proof. ]

The key idea behind this result is that (12) converges

to (34) for § — 0. Therefore, it is sufficient to determine
a policy m, which satisfies the risk-neutral condition (34), for
ensuring (12) with a suitably small value of 5 € R,.

Although (34) is a risk-neutral condition, it exhibits an ex-
pectation with respect to the next state ™. Hence, it does not
directly enable the applicability of standard RL techniques and
consequently, it does not coincide with the acquisition function
considered in the definition of the safe policy (28). In order to
overcome this issue, we exploit (29) to relate E+ [V (z™1)]
to V(). This is achieved using the following lemma.

Lemma 3: Assume that there exist 61,605 € R, with 6; <
1/(1—) such that (29) is satisfied. Then, it holds that

0, —0y—1 0
Em+[vﬂ(w+)]_‘/ﬂ($) < ! 971,;}/ Vﬂ(w) + ’yT? (38)
Proof: By solving Bellman’é identity !
Va(x) = c(x) +Eqp+ [Vr(2')], 39)

for Eg+ [V (x')], we can express AVy(x) = Egy+ [Vr ()] —
Ve(x) as

1
AVr(@) = ~(=e(@) + (1 = 7)Vx(@)). (40)
Due to (29), we have
x(x)—0
cla) > 202 (41)
61
which allows us to bound (40) by
1 Ve(x) — 0
Ava(e) < L (-HZE @) @)
Y 61
Rearranging the terms on the right side finally yields
91 — 91’}/ -1 02
AVye < ———— Vo (z) + —, 43
o (z) 0 43)
where (01—017—1)/g,y is guaranteed to be negative since 67 <
1/(1—y) is assumed. [ |

Lemma 3 ensures that the minimization of V() also
reduces E,+ [V (2 ™)]. This directly allows proving Theorem 1
in combination with Lemma 2 as shown in the following.

Proof of Theorem 1: 1t is straightforward to see that
optimizing with respect to the expectation over x yields
identical policies mrsato(+) as the point-wise optimum 7, () =
argmin, c; V() for a given & and a continuous transition
function f(-,-,-). Due to optimality of 7(-), we additionally
have the inequality Vr_(x) < Vi («) for all € X. Therefore,
it follows from Lemma 3 that

1 1 0y
EVe (D)) <=(1-—=|Vx —.
Vel < 2 (12 1) Ve (o) + 22
Since the right side of (44) is linear in V.. (x), the maximum
inside V¢ is achieved for Vr_, . (x) = &, such that Lemma 2

guarantees

(44)

1 1\ 6
Rg[Vi . (™ g(l) + — 45
ﬁ[ safe( )} ~y 0, § ~6, (45)
for sufficiently small 8 € R,. Therefore, (12) holds if
1 1\- 0 _
(1—>§+2<§. (46)
Y th 701
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Solving this inequality for £, we obtain that
0
2 -
91 (’y - 1) +1

needs to be satisfied. As (30) implies & > 65¢ + 6, we can
adapt this requirement to a condition on ¢ yielding
b2
b1(y—-1)+1
Due to (31), this inequality holds. Hence, (12) is satisfied
for sufficiently small 3, which ensures that (32) is feasible
and results in a probability * < 1. Thus, Proposition 1
immediately implies 1-step d*-safety of 7rgafe(+) and thereby
concludes the proof. ]
Remark 8: In practice, we can generally only obtain an
approximate solution to (28). However, this does not crucially
affect our results as we only need to account for approximation
errors via an additive term in (44), while other steps of
the proof of Theorem 1 do not change. Therefore, it is
straightforward to show that Theorem 1 remains valid, but
requires a larger lower bound for ¢ compared to (31) when
using an approximate solution for (28).

3 (47)

3¢ + 04 > (48)

D. Risk-Sensitive Response Inhibition via Safety Filters

Based on the safe policy 7rsafe(-) obtained using (28),
we propose a risk-sensitive inhibitory control strategy for
enabling safe RL. For this purpose, we first obtain an optimal,
potentially unsafe policy by solving the optimization problem

7" =argmaxEyg o, [Z v (xy,, w(a:k))] , (49)
well k=0
where r : X x U — Ry 1 denotes a reward function and xj, is
defined through the iterative application of (1) with xg = =
and uy = 7(xy). This problem can be solved using standard
RL algorithms such as soft actor-critic RL [37]. Afterward,
a safe backup policy s (-) is computed by solving (28),
which can be straightforwardly achieved using standard off-
policy RL techniques. Finally, we apply the policy to the true
system (1). For this roll-out, we employ the risk-sensitive filter

Toafe(T) = arg min [|77 (x) — u| (50a)
uel
s.t. Rg[Var, oo (f (2,1, w))] <& (50b)

which makes use of the safe backup policy mrgate(+) through the
cost function V_, (-) and minimally adjusts the policy 7*(-)
such that the safety condition (12) is satisfied. Thereby, 1-step
d-safety m’ . (-) is directly inherited from the safe backup
policy Trsafe(-) as shown in the following theorem.
Theorem 2: Consider a cost function c¢(-) satisfying (7),
a threshold ¢ for which (31) holds, and process noise w
satisfying Assumption 2. Moreover, assume that there exists a
policy 7 (-) satisfying (29) with 0; < 1/(1—y) for all € Xafe.
Then, the safety filtered policy (50) is 1-step d*-safe on V?,;;afs
with 0* = exp (8* (€* — £)), where 3* and &* are defined
in (32).
Proof: Due to Theorem 1, 7y, (-) defined in (28) satis-
fies (50b). Thus, the optimization problem (50) is guaranteed
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to be feasible for all states x ¢ Vﬁ:safe with the trivial
solution w = 7rgafe (). Finally, §*-safety directly follows from
Proposition 1. [ ]

While this theorem employs the optimal parameters 5* and
&*, it immediately follows from the proof of Theorem 1 that for
every value ¢ with £* < ¢ < &, there exists a 3 € R satisfy-
ing (32b). Therefore, -safety on V¢ C V¢« with § > 6* can be
straightforwardly ensured in practice by choosing a sufficiently
large value ¢ < ¢ and a suitably small value 3 € R, . The
specific values that are necessary depend strongly on the noise
distribution p and function distribution F. This can easily
be seen from the fact that distributions with larger variance
generally cause higher risks Rg[Vr,,.. (f (2, u,w))], such that
smaller values of § and larger values of £ can be required.

To reach a desired probability §; € Ry, it is possible
to adaptively choose these parameters by solving a modified
optimization problem

Tnfe (L) :argeTUinﬁeRT,igleRJr l7* () —w||+ A6 —d4| (51a)
st Rg Vi (F(@,u,w))] <€ (51b)

0 =exp (B(£-¢)) (5lc)

£<¢, (51d)

where A\ € RT is a Lagrange multiplier. By selecting a
sufficiently large A, the second term in (51a) acts as a soft
constraint and ensures that the desired probability ¢, is reached
whenever possible and minimizes the difference otherwise.
Since Theorem 1 ensures the existence of 5*, £* satisfying
the constraints (51b)-(51d), this optimization problem is guar-
anteed to be feasible. Hence, it can provide an effective way
to determine safe control inputs without the need to specify 3
and £ a priori.

Remark 9: When [ becomes larger, the control becomes
more pessimistic, and therefore, the probability of safety
generally increases. However, there exists a critical value at
which the safety constraint (50b) becomes infeasible for all
£ < & That is, the control becomes too phobic to act. This
resembles a well-known behavior in risk-sensitive control and
RL commonly referred to as neurotic breakdown [39].

IV. RISK-SENSITIVE RESPONSE INHIBITION UNDER
BOUNDED DISTURBANCES

While Section III provides approaches for certifying and
learning safe policies in environments with stochastic noise,
these methods cannot be directly applied when merely a
bound for the disturbances are available. Moreover, the pre-
viously presented results do not provide J-safety guarantees.
Therefore, we extend them and derive conditions for §-safety
in environments with bounded disturbances in Section IV-
A. Based on these conditions, we show how d-safe policies
can be learned despite bounded disturbances in Section IV-
B. Finally, a risk-sensitive safety filter employing the learned
backup policy is proposed in Section IV-C.

A. Robustness of Risk-Averse Cost Conditions

Since we do not make any assumptions about the distribu-
tion of the bounded disturbance, we cannot compute expec-
tations with respect to the disturbance distribution. Therefore,
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we marginally adapt the definition of the expected cumulative
cost (6) by defining it as

V(@) =Ef (52)

kac<wk>] :
k=0

where we consider the state sequence xj to be generated by
dynamics (1) with noise wy = 0 for all £ € N. Note that we
only ignore the presence of disturbances w by setting wy = 0
in the definition of the value function (52), but all guarantees
in this section are derived for systems with bounded noise as
stated in Assumption 3.

Despite this minor change, it can be directly seen that
Lemma 1 still holds for (52), such that we can focus on the
derivation of an analogous result to Proposition 1, but with the
stronger notion of d-safety. In order to achieve this, we require
the well known concept of covering numbers [40]. While the
computation of covering numbers for a given discretization
7 € Ry is generally a complicated problem, they can be easily
upper bounded in d,-dimensional Euclidean spaces by [41]

da
Vamax, e Iz - |
N(r) = e . (53)

Based on covering numbers, we can straightforwardly adapt
and extend Proposition 1 to prove d-safety for the bounded
disturbance scenario as shown in the following proposition.

Proposition 3: Consider a cost function ¢(-) satisfying (7),
disturbances satisfying Assumption 3, a constant ¢ € R,
satisfying Assumption 4, and Ly-, Ly .- and Ly ,-Lipschitz
functions Vz(-), f(-,7(:),w) and f(x,m(x), ), respectively.
Assume there exist constants £, 3€ Ry with { + Ly Ly <&
such that (12) holds for £ = f(x,w(x),0) and define

AL =E€~&~ LvLyuw, (54)
. nAg a1
0 = min N <LVLf,:v) exp (=B(1 —n)AL). (55

If § < 1, then, the system is safe for all £ € N on V? with
probability 1 — 4.

Proof: We proof this proposition by showing safety
probabilistically for a finite set of points and extending the
guarantees to the whole set V& through Lipschitz continuity.
For this purpose, we define a grid {a:(”)}N,(T) such that

n=1
max min |z —z™| <. (56)

zeVs n=1,...,N(7)

This ensures that any point x within the safe set Vi is not more
than 7 distance away from a test point on the grid. Lipschitz
continuity of Vi (-) and f(-,-,-) implies that

max

m:um_z(n)”<TR5[V’T(f(‘”’7"(90),0))} <

Ry [V (f (@), 7 (2™),0))] + Ly Lyor

(57)

due to the linearity of the risk operator with respect to

constants. Similarly, Lipschitz continuity of V. (-) and f(-,-, ")

guarantees that

Ry [V (f (@), m(2™), 0))] < R [Var(f (&™), m(™),0))]
+ Ly Ly ||l (58)

Combining these two inequalities, exploiting (12) to bound
Rg[Vae (£ (2™, 7(2(™),0))] by & and employing the as-
sumed bound ||w| < @, we obtain

Rﬂ [Vﬂ'(f(m7 71'(:13), w))] <

L\/Lf,aﬂ' + LvLﬁw@ + f

max
@l (||

(59)

with probability 1 — exp(8(§ + Ly Ly o7 + Ly Ly, —§))
for each grid point (") individually due to Proposition 1.
Therefore, we choose 7 = 1(€—€—LvLsw®)/Ly, L, for n €
(0,1) to ensure Ly Ly 7+ Ly Ly ,@+& < € Moreover, note
that by over-approximating V& using a box, it follows directly
from [41] that the covering number N (7) can be bounded by
(53). Hence, the union bound overalln = 1, ..., N grid points
yields

P(Vu(xt) <& Vo eVE)>1-0, (60)

where ¢ is defined in (55). [ |
In this theorem, we exploit Lipschitz continuity to quantify the
worst-case effect of the bounded disturbance deterministically.
This allows the derivation of the bound (56), such that we
immediately obtain a tightened condition & + A¢ < € which
explicitly takes the disturbance bound & into account via
(54). While this might seem like a more restrictive condition
compared to Proposition 1, it is important to note that this
tightening is already included in R[] in the stochastic noise
setting. Therefore, the explicit appearance of Af is merely
an artifact of our lack of knowledge about the disturbance
distribution, but does not directly imply additional conser-
vatism of Proposition 3. The tightness of our result becomes
apparent when considering the special case of value functions
V. (x) = |cTx| for some vector ¢ € R% and dynamics with
additive disturbance f(x, 7 (x),w) = f(, 7 (x)). Then, we
have

max Rgle” f(z, m(x))+c"w|] =

lwl| <@

(61)

Rs[lc” f (. m(@))[] + @llell,

i.e., (59) becomes an equality. This similarly holds true for (57)
when additionally considering linear dynamics. Therefore, we
cannot expect to obtain any less conservative results without
further and more restrictive assumptions on V(-) and f(-,-,-).

The transition from 1-step d-safety to J-safety is achieved
using a common approach for ensuring safety with learned
probabilistic models [42], [43], for which we exploit the
deterministic treatment of the bounded disturbances. This
allows us to avoid considering the safety probabilities for
individual time steps and jointly lower bound the probability
of the next state being in V? all states using (60). Therefore,
when starting in the set VZ, we do not have to multiply the
individual probabilities of each step along the path since they
are all covered already by the joint probability.

Since the safety condition (12) is used both in Proposition 1
and Proposition 3, most of the interpretation of Proposition 1
directly transfers here. The main difference lies in the resulting
probability of a safety violation §, where A¢ plays a twofold
role in (55). A large value of A has not only a positive effect
on the exponential term in (55), but it also reduces the covering
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number N (-). Therefore, @ ~ 0 is generally beneficial for
showing §-safety, which is intuitive since @ = 0 resembles
the case of no disturbance.

Remark 10: It straightforwardly follows from the proof
of Proposition 3 that the satisfaction of (12) for =+ =
f(x,w(x),0) with A > 0 implies the 1-step safety of
the system on VI with probability § = exp (—BAE). The
additional conservatism caused by the factor N (A¢/Ly 1; )
in (55) can be completely attributed to the stronger notion of
safety guaranteed by Proposition 3, which can lead to the fact
that a 1-step d-safe controller under bounded disturbances is
not necessarily d-safe for infinitely many time steps. Therefore,
the requirements for safety in the bounded disturbance sce-
nario are generally not more restrictive than in the stochastic
noise setting, but stronger notions of safety can be shown.

Remark 11: While we cannot expect to achieve a less
conservative result under the considered assumptions as previ-
ously discussed, it is clear that a Lipschitz-based analysis can
cause significant approximation errors compared to one based
on more restrictive assumptions. Therefore, Proposition 3 is
best suited for small disturbance bounds w and systems with
minor nonlinearities in the dynamics f(-,-,-). The derivation
of improved results under further restrictions on Vr(-) and
f(:y -, ) is left for future research.

Remark 12: Necessary results for safety analogous to
Proposition 2 can also be straightforwardly obtained in the
bounded disturbance setting by adapting the proof of Propo-
sition 2 similarly as done for the proof of Proposition 3.
Therefore, a detailed proof is omitted here for the sake of
brevity.

B. Learning Safe Policies under Bounded Disturbances

Similar to Section III-C, merely an approach for certifying
the d-safety of a policy 7r(-) is introduced in Section IV-A.
In this section, we show that a suitable policy satisfying the
conditions of Proposition 3 can be obtained by solving (28)
using the expected cumulative cost function (52) defined for
the disturbance-free dynamics. In order to achieve this, we
require a bound on the spread of the distribution over functions
F around its mean

p(z, 7 (z), w) = Eg [f(z, 7 (x), w)]. (62)

This bound is formalized in the following assumption.
Assumption 5: The expected norm deviation of the stochas-
tic model f(-,-,-) from its mean is bounded by v, i.e.,

Ep [[lf (@, 7(2),w) - ple, 7(z),w)|] <v

for all w satisfying Assumption 3.

When the distribution F is a Gaussian process, then
Es [|| f(z, w(x),w) — p(x, w(x), w)||s] is the mean of a Chi
distribution. Therefore, we can straightforwardly bound the left
side of (63) by

By || (@, m(2),w) - pla, (@) w)]] <
P(5(ds +1)
F(GdAE (@, m(@),w))’

(63)

(64)
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where I' : R :— R denotes the gamma function, X
R x R x R% — R4 outputs the covariance matrix
of the Gaussian process, and A : R% x R% — R returns the
minimum eigenvalue of a matrix. Therefore, we can directly
obtain the value of v in (63) by taking the maximum with
respect to  and w, which underlines the non-restrictiveness
of Assumption 5.

Using this assumption, we can show that 7rg,¢. satisfies the
conditions of Proposition 3 under certain assumptions, which
is demonstrated in the following theorem. The proof follows
after a discussion of the assumptions.

Theorem 3: Consider a cost function ¢(-) satisfying (7), a
stochastic model F satisfying Assumption 5, a disturbance
satisfying Assumption 3, and Ly .- and Ly ,-Lipschitz func-
tions f(-,m(:),w) and f(x,m(x),), respectively. Assume
that V... (-) is Ly-Lipschitz and upper bounded by V on
V?,rsafe. Moreover, assume that there exist a policy 7r(-) and
constants 61,0, € Ry with 6; < 1/(1—4) such that (29) is
satisfied. If there exists a n € (0,1), such that v and @ satisfy

2V
K nkAc A-mrae _
—A 2L N|—— Ly L
o> VU( <2LVLM)> + Ly Ly oo, (65)
where
ﬂ:03((7—1)91+1)’ (66)
v61
Ac—é b2 o 67)

00y -1)+1) 6y

and (31) holds for ¢, then, the system is safe for all £ € N
with probability 1 —§ € (0,1).

Discussion: The assumption of a Lipschitz continuous op-
timal value function Vi, (-) is often satisfied in practice
and follows immediately from Liptschitz continuity of the
dynamics f(-,-,-), the policy parameterization 7 and the cost
¢(+). Moreover, an upper bound for Vy__,_ () on the compact set
V?,rsafe follows immediately from Lipschitz continuity. There-
fore, these requirements are generally not very restrictive. In
comparison to Theorem 1, condition (65) can be considered as
a tightening of the constraint Ac > 0. Since Ac is merely the
difference between (31) and ¢, this can be interpreted as the
requirement of a sufficiently large safety margin. Note that the
factor x introduced in Theorem 3 is only an artifact caused by
mapping the condition on V(-) in Proposition 3 to the step
cost function c(-).

Similar to Proposition 3, a significant amount of the in-
creased restrictiveness of the assumptions of Theorem 3 is
caused by the consideration of J-safety instead of 1-step J-
safety. In fact, we can simplify condition (65) to

gAc > 2Lyvexp (ﬁf/) + Ly Ly, (68)

when we are only concerned with 1-step d-safety. Analogous
to Remark 10, this still causes a slightly tightened constraint
due to the term Ly, L y@. Additionally, we now have to consider
the spread of the distribution over dynamics, which leads
to the summand 2Ly v exp (5‘7) This simplification clearly
illustrates that Theorem 3 can be seen as a tightened version of
Theorem 1 to deal with the possibly adversarial disturbance w.
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Proof: In order to prove Theorem 3, we bound the risk
Rg[V ()] in terms of the expected cost and the spread of the
dynamics v around their mean. This is shown in the following
lemma.

Lemma 4: Consider a probabilistic model f ~ F, such that
Assumption 5 holds. If a function V'(+) is Ly -Lipschitz and
upper bounded by V, then, the risk is bounded by

Rs[V(z")] <E[V(z*)] + 2Lyvexp(BV).  (69)
Proof: A Taylor expansion of the risk of the cumulative
cost around E[V (z™1)] yields

Rs[V (")) < (70)

% log (exp(BE[V (™ )]) + 8 exp(BV)E(V (&) —E[V (zH)]])) .

Since log(1 +a) < a for a € Ry and E[V(z1)] > 0, we can
bound this expression by

Rs[V(z")] <E[V(zh)]+exp(BV)E [|V(z™)—E[V (z")][].

(71
Due to Lispchitz continuity of V'(-), we have

V(:B+) < V(N($7 77(1")7 w))+LV Hw+ _”’(w’ 71'(:1:), w) ||>
(72)

which we can analogously exploit to determine a lower bound
for V(). This immediately leads to

E[[V(z")-E[V(z")][] < QE[Lvllﬁ—u(wm(w),w)!%)

< 2Ly, (74)

where the second line follows from the assumed bound on the
expectation. Substituting (73) into (71) concludes the proof.
|
While we can use the continuity of the risk operator Rg[-] with
respect to (3 to transition from expectation to risk in the proof
of Theorem 1, this approach cannot be used for the bounded
disturbance case since this noise is not considered in the
risk operator. Lemma 4 allows us to circumvent this problem
and effectively substitutes Lemma 2. Thereby, it enables the
following proof of Theorem 3.
Proof of Theorem 3: Due to Lemma 3, we have

B[V (@)] < © (1 — 1) gy 2

75
S G AR

for all x € Vf;safe. Moreover, it follows from the proof of
Theorem 1 and the definition of Ac in (67) that

_ 0,
SCCOG-DD

Substituting this expression into (75) and employing Lemma 4,
it follows that Rg[Vx_. (21)] < &, where

+ 0;Ac. (76)

safe (

6> 03(01 — 1) ) -
= Ac | +2Lyvexp(BV).
¢ ((91(7 -1)+1) 761 vvexp(AV)
)
Therefore, we obtain
A¢ > kAc—2Lyvexp(BV) — LyLy,w (78)

for A¢ defined in (54) and k defined (66), where k > 0 is
guaranteed since 6; < ﬁ holds by assumption. In order to
ensure A¢ > 0, we choose

2 nkAc
(Y (@) ™
such that
2Lyvexp(BV) + Ly L@ < gAc (80)

due to (65). Moreover, it follows from Proposition 3 that

nkAc 1
0=N|—7— —=pB(1 —n)kA 1 81
(QLva,x> eXp( R C) <h @b
which concludes the proof. [ ]

C. Response Inhibition using Robustified Safety Filters

Using the safe policy (28), we propose a robustified risk-
sensitive approach for response inhibition to enable safe RL
despite bounded process disturbance. Given a nominal, poten-
tially unsafe policy 7w*(-) obtained, e.g., via (49), this approach
determines control inputs w by filtering them through the
optimization problem

T late(®) = argmin ||7* (z) — u| (82a)
uel
s.t. RB[VWsafe(f(x7u7 0))] S 5*_LVLf,UJ('D'
(82b)

The safety filter employs the backup policy 7rgafe(+) indirectly
through the cost function Vj_ (-). In contrast to the safety fil-
ter (50) for the stochastic noise setting, (82) explicitly tightens
the safety constraint using the term Ly Ly @ to ensure a suf-
ficient robustness against the disturbance w. Thereby, it aims
to minimize the modification of the nominal control law 7v* ()
without any knowledge of a distribution of the disturbance w
to ensure J-safety as shown in the following theorem.
Theorem 4: Consider a cost function ¢(+) satisfying (7), a
stochastic model F satisfying Assumption 5, a disturbance
satisfying Assumption 3, and Ly .- and Ly ,-Lipschitz func-
tions f(-,m(:),w) and f(x,m(x),-), respectively. Assume
that V... (-) is Ly-Lipschitz and upper bounded by V on
Visafe. Moreover, assume that there exist a policy 7r(-) and
constants 61,05 € R, with §; < 1/(1—y) such that (29) is
satisfied. If there exists a ny € (0,1), such that v and @ satisfy
(65), then, the safety filtered policy (82) is J-safe on Vﬁrsafe.
Proof: Due to Theorem 3, mrga.(-) defined in (28)
satisfies (82b). Thus, the optimization problem (82) is
guaranteed to be feasible for all states x ¢ Vﬁrsafe with
the trivial solution w = mgute(x). Finally, d-safety directly
follows from Proposition 3. [ ]
Theorem 4 can be considered the analog to Theorem 2,
such that most of the discussion after Theorem 2 applies in
the bounded disturbance setting of this section too. Hence,
it is also possible to use sub-optimal values for 8 and &,
and it is straightforward to design an adaptive strategy for
automatically finding suitable values of ¢ and S similar to
(51a). Consequently, Theorem 4 allows to effectively ensure
safety using risk-sensitive response inhibition based on (82b).

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3575565

12
A A
risI:\
sensitive
model
| | uncertainty
Fig. 2. Toy example illustrating the importance of risk-sensitivity in

response inhibition. A vehicle has the goal of reaching its target position
(green star), while avoiding a collision with an obstacle (red circle). Our
proposed risk-sensitive safety filter restricts exhibits tightened safety
constraints only in the directions affected by the uncertainty (black
arrows), such that the vehicle can approach the obstacle arbitrarily close
in the horizontal direction (blue curve).

V. SIMULATIONS

In order to demonstrate the flexible applicability and ef-
fectiveness of our risk-sensitive inhibitory control approach,
we apply it to multiple problems in simulation. In Section V-
A, we first consider the simplified maneuvering problem
illustrated in Fig. 2 to illustrate the benefits of risk-sensitivity
in response inhibition. We demonstrate the applicability of
our proposed methods by applying them to the Half-Cheetah
environment [44] and investigate the performance-safety trade-
off for conflicting design goals in Section V-B.

A. lllustrative Example for Benefits of Risk-Sensitivity

We illustrate the proposed methodology for determining
risk-averse safety filters by considering the example illustrated
in Fig. 2, in which a wheeled vehicle needs to reach a target
position while avoiding collisions with a circular obstacle. We
describe the vehicle through the dynamics

_ _ sin(qk)

i1 = fxp, up, wi) = T + vy, [cos(qk)} (83)
such that the state @ € R? corresponds to the position of a
point mass moving in a two-dimensional space. The control
input w = [v ¢]T consists of the vehicle’s orientation ¢ € R
and its velocity v € Rg 4, which we require to be upper-
bounded by v < 0.1. The desired movement to the target
position &, = [—2.5 0] is encoded through a reward function

r(z) = =z — 4. (84)

Moreover, we define the circular obstacle via an unsafe region

Xinsafe = {x e X: ||CC - mc” < R}7 (85)

where R = 1 denotes the radius of the obstacle and x. = [0 0]
is its center. Note that these dynamics are independent of
disturbances and we consider a deterministic model knowl-
edge, such that this setting constitutes a special case of the
theoretical results for the bounded disturbance scenario.
Since there is no unknown dynamics component, we can
manually solve the optimal control problem (49), which leads

IEEE TRANSACTIONS AND JOURNALS TEMPLATE

to the nominal optimal policy

min {v, || — x|}

* _
™ (z) = arctan2(xg1 — 1, g2 — T2)

(86)
The behavior of the vehicle controlled by this policy is
illustrated in Fig. 3 a). It can be easily seen that the nominal
optimal policy is ignorant of the obstacle and many starting
positions will lead to a collision with it. However, the target
position is quickly reached from all starting positions.

In order to determine a policy respecting the safety con-
straints, we define a cost function

o(x) :max{o,é_ Hcc—chH}, 87)
where R = 2 > R defines the maximum value of the
cost function and ensures its positiveness. Therefore, safety is
ensured if ¢(x) < ¢ = 1. Analogously to the optimal policy,
we can calculate a safe back-up policy and its value function
(6) manually under the assumption of ( = 0. This yields

v
Teate() = {arctan?(xl — Teq, Ty — $c72):| (88)
[(R—llm—cl)/s)
Veol@) = > A (R-le—ad i), 9

i=0
where the sum is only over a finite number of time steps since
R — ||& — x| — iv will be negative after |(R—lz—zc])/s]
steps. Therefore, this value function can be straightforwardly
computed in practice. Applying the safe back-up policy (88)
to the system (83) leads to the trajectories illustrated in Fig. 3
b). While the obstacle is avoided for all initial states starting
outside of it, the back-up policy is neglecting the target
position and yields a poor performance.

To overcome these weaknesses, we employ the safety filter
(82). Since the value function Vi_, (-) depends only on
the distance ||& — x.||, its sub-level sets are circles. Hence,
€ = 48.87 can be easily computed by evaluating Vy_, (-) for

any point  with ||z — x.|| = R. Following Remark 6, this
definition induces a barrier function
B(@) =& = Vr (@) SR =l — ], (90)
which is similar to the straightforward choice
B(x) =R — ||z — x| (C2))

when directly designing the barrier function. This essentially
renders the safety filter (82) based on the value function
(89) a CBF constrained optimization problem, which can
be commonly found in literature [13], [36]. Therefore, the
application of our safety filter with £ = 48.8 to the dynamics
(83) expectably leads to a closed-loop behavior with trajecto-
ries avoiding the obstacle and converging towards the target
position as depicted in Fig. 3 c). Thereby, the strengths of
both the nominal optimal policy and the safe back-up policy
can be exploited. Note that the trajectories can only approach
the obstacle so closely since there is no uncertainty and no
disturbances, such that no cautiousness is required.
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a) nominal optimal policy

\\//

b) safe back-up policy
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Fig. 3.  lllustration of different policies for the toy example with a
circular obstacle obstructing the direct path to a target position. While
the nominal optimal policy leads to strong safety violations, the safe
back-up policy does not achieve the task of moving the vehicle to
the target position. By combining both of them through a safety filter,
obstacle avoidance and task execution are achieved with low conser-
vatism when the dynamics are known perfectly. Extending this behavior
to probabilistic models through a tightening of constraints leads to a
conservative behavior around the obstacle which ignores knowledge
about the uncertainty distribution. In contrast, risk-aversion in the safety
filter exploits this knowledge to only tighten the safety constraint in
directions where it is necessary to account for the uncertainty.

This changes when we consider uncertain dynamics

0

Tp1 = flop, up, wi) + [d(mk, uk)] 92)
in the safety filter (82), where we assume that d(z,u) = (1+
v)¢, ¢ ~ U([—0.5,0.5]), represents an unknown component
that only affects the dynamics in the vertical direction. A
common approach in the literature on CBFs to deal with
such an uncertainty is to ensure robustness of the control
law by tightening the safety constraints [45]. This essentially
corresponds to choosing a smaller value & = 15, which results
in the behavior shown in Fig. 3 d) when applying the safety
filter to (83). The increased robustness keeps the trajectories
farther away from the obstacle, but the direct tightening of
the constraint is ignorant of the direction of the uncertainty.
Therefore, the resulting safety filtered policy is conservative.

This conservatism can be avoided by making the safety filter
risk-averse, which corresponds to choosing a comparatively
large value 8 = 10. The resulting behavior of the closed-loop
system can be seen in Fig. 3 e), where the trajectories only
stay away from the obstacle in the vertical direction, while
they approach it in the horizontal direction similarly as for
the safety filter with the exact dynamics depicted in Fig. 3
c). This can be easily explained by the fact that uncertainty
in x4 tangential to the level sets of the value function
barely affects the value of the risk Rg[Vr_, . (®x+1)], such
that independent actuation for every state in (83) allows the
safety filter to push the system away from the obstacle only
in the vertical direction. Therefore, the risk-awareness only
tightens the safety constraint in the direction, in which the
uncertainty acts and thereby, significantly reduces the overall
conservatism of the resulting policy.

B. Safety-Performance Trade-off in Response Inhibition

While we can construct value functions or barrier functions
for simple problems such as the vehicle control example in
Section V-A by hand, a manual design is generally challenging
or not even possible for complex dynamics and constraints.
This does not pose a hurdle for our risk-sensitive response
inhibition approach since we can infer suitable value functions
using RL techniques. We demonstrate this by computing and
applying the safety filter (50) to the popular Mujoco Half-
Cheetah environment [44], which is illustrated in Fig. 4. The
Half-Cheetah is a planar model of a large, cat-like robot with
6 actuated joints. The main goal is to maximize the robot’s
walking velocity with the least control effort possible, which
is encoded in the default reward function. We consider the
default model parameters for the Cheetah robot, but assume
a body mass perturbed by a Gaussian distributed random
variable with 0 mean and standard deviation 0.1. In order to
illustrate the trade-off between safety and performance realized
by risk inhibition, we set optimality and safety in a direct
conflict by constraining the velocity to v < vepit, Verit = 2.
As cost function for the computation of the safe policy (28),
¢(x) = v — v is employed with threshold ¢ = 2 — v, where
v = —10 denotes the considered minimum velocity of the
Half-Cheetah robot. This cost function encourages the robot to
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Fig. 4.  lllustration of the Half-Cheetah model, which is a planar
abstraction of a cat-like robot with 6 degrees of freedom.

run with a negative velocity, such that the distance to the safety
threshold velocity v, is maximized. Note that the subtraction
of v is necessary to ensure the non-negativity of the cost ¢(-)
assumed in our derivations, but it merely causes a constant
off-set in the cumulative cost Vi (-).

The optimal and safe policies are obtained using the Soft-
Actor Critic (SAC) algorithm [37] with 400 training iterations
each with 1000 time steps and the hyper-parameters provided
by [46]. For computing the expectations over dynamics f(-)
in (6) and (49), we randomly sample 10 body masses, such
that we can use the corresponding sample environments
to empirically approximate all necessary expected values.
The risk-sensitive safety filter (50) is implemented using
the cross-entropy method [47] with 5 iterations per time
step and 10 particles. The safety constraints are considered
in an augmented objective function using fixed Lagrange
multipliers, such that they are effectively enforced using
soft constraints to allow recovery after constraint violations.
The risk operator Rg|-] is approximated through 100 sample
environments. For each parameter combination (&, 3), 100
time steps are simulated and 5 random seeds are averaged.
Our response inhibition approach is compared to an adaptation
of the model predictive controller in [48] to a predictive safety
filter. We employ this safety filter with a horizon 10 over
which the original state constraint v < v is enforced through a
soft constraint with Lagrange multiplier 10%. The optimization
is executed using the cross-entropy method with 100 particles
to account for the more difficult optimization problem.

The resulting numbers of constraint violations and the
average reward for different values of 3 and £ are depicted
in Fig. 5. We can observe that increasing £ has exactly the
expected effect of loosening the safety constraint by admit-
ting higher velocities v, such that the probability of safety
decreases and more constraint violations can be observed. At
the same time, this allows a higher robot velocity, which in
turn causes an increasing average reward. A similar effect can
be observed with the risk parameter 5 due to the considered
state-independent model uncertainty. When /3 is increased, the
conservatism of the safety filter increases. This leads to a
lower number of constraint violations, but the average reward
also reduces. Therefore, the parameters £ and 3 exhibit the
impact on the probability of safety as discussed in Section III-
A, such that they allow to naturally balance conservatism
and the number of constraint violations. The predictive safety
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Fig. 5. Number of constraint violations and average rewards in depen-
dency on the safety constraint threshold ¢ = 605 + A¢ and the risk-
sensitivity 3. Shaded areas represent the standard deviation between
the simulations. Reducing 8 and increasing & have a similar effect of
admitting more risky behavior in the response inhibition, such that the
number of constraint violations and the average reward increase. The
predictive safety filter wpspc leads to more conservative behavior in
comparison.

filter achieves a similar number of constraint violations as
our approach for risk inhibition with large risk sensitivity 3
and safety threshold &, but it yields smaller average rewards.
This observation can be attributed to the significantly more
challenging optimization problem resulting from the longer
prediction horizon, such that even the considerably larger
number of particles used for optimization does not suffice to
obtain a comparable trade-off between safety and performance
as our proposed risk-inhibition approach. Combined with a
lack of strong theoretical guarantees for such a predictive
safety filter that avoids hard-to-design terminal constraints,
this example clearly highlights the beneficial properties of the
proposed method for risk inhibition.

VI. CONCLUSION

Inspired by the psychological concept of inhibitory control,
this paper proposes a risk-sensitive method for rendering
arbitrary policies safe. This method is based on the intro-
duction of cost functions, such that state constraints can be
expressed in terms of value functions. We show that this
formulation allows us to employ standard RL techniques for
obtaining policies that their only goal is to ensure safety.
Based on the determined safe policies and corresponding value
functions, a risk-sensitive safety constraint is employed to
enforce the satisfaction of state constraints online. Thereby,
risk-sensitive inhibitory control is realized and its effectiveness
is demonstrated in simulations.
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